Noncommutative analogues of q-special polynomials and q-integral on a quantum sphere

نویسنده

  • D. Gurevich
چکیده

The q-Legendre polynomials can be treated as some special ”functions in the quantum double cosets U(1) \ SUq(2)/U(1)”. They form a family (depending on a parameter q) of polynomials in one variable. We get their further generalization by introducing a two parameter family of polynomials. If the former family arises from an algebra which is in a sense ”q-commutative”, the latter one is related to its noncommutative counterpart. We introduce also a two parameter deformation of the invariant integral on a sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Balls and Mirror Quantum Spheres

Noncommutative analogues of n-dimensional balls are defined by repeated application of the quantum double suspension to the classical low-dimensional spaces. In the ‘even-dimensional’ case they correspond to the Twisted Canonical Commutation Relations of Pusz and Woronowicz. Then quantum spheres are constructed as double manifolds of noncommutative balls. Both C-algebras and polynomial algebras...

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

2 3 D ec 1 99 9 THE ASKEY - WILSON FUNCTION TRANSFORM SCHEME

In this paper we present an addition to Askey’s scheme of q-hypergeometric orthogonal polynomials involving classes of q-special functions which do not consist of polynomials only. The special functions are q-analogues of the Jacobi and Bessel function. The generalised orthogonality relations and the second order q-difference equations for these families are given. Limit transitions between the...

متن کامل

Unitary representations of the quantum algebra su q ( 2 ) on a real two - dimensional sphere for q ∈ R + or generic q ∈

Some time ago, Rideau and Winternitz introduced a realization of the quantum algebra suq(2) on a real two-dimensional sphere, or a real plane, and constructed a basis for its representations in terms of q-special functions, which can be expressed in terms of q-Vilenkin functions, and are related to little q-Jacobi functions, q-spherical functions, and q-Legendre polynomials. In their study, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997